By Topic

Location-based compromise-tolerant security mechanisms for wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yanchao Zhang ; Dept. of Electr. & Comput. Eng., Univ. of Florida, Gainesville, FL, USA ; Wei Liu ; Wenjing Lou ; Yuguang Fang

Node compromise is a serious threat to wireless sensor networks deployed in unattended and hostile environments. To mitigate the impact of compromised nodes, we propose a suite of location-based compromise-tolerant security mechanisms. Based on a new cryptographic concept called pairing, we propose the notion of location-based keys (LBKs) by binding private keys of individual nodes to both their IDs and geographic locations. We then develop an LBK-based neighborhood authentication scheme to localize the impact of compromised nodes to their vicinity. We also present efficient approaches to establish a shared key between any two network nodes. In contrast to previous key establishment solutions, our approaches feature nearly perfect resilience to node compromise, low communication and computation overhead, low memory requirements, and high network scalability. Moreover, we demonstrate the efficacy of LBKs in counteracting several notorious attacks against sensor networks such as the Sybil attack, the identity replication attack, and wormhole and sinkhole attacks. Finally, we propose a location-based threshold-endorsement scheme, called LTE, to thwart the infamous bogus data injection attack, in which adversaries inject lots of bogus data into the network. The utility of LTE in achieving remarkable energy savings is validated by detailed performance evaluation.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:24 ,  Issue: 2 )