By Topic

Bismuth-oxide-based nonlinear fiber with a high SBS threshold and its application to four-wave-mixing wavelength conversion using a pure continuous-wave pump

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ju Han Lee ; Res. Center for Adv. Sci. & Technol., Univ. of Tokyo, Seoul, South Korea ; T. Nagashima ; T. Hasegawa ; S. Ohara
more authors

The unique and practical benefits of the use of bismuth-oxide-based nonlinear fiber (Bi-NLF) in implementing a four-wave-mixing (FWM)-based wavelength converter for fiber-optic-communication-system applications are experimentally demonstrated. First, the Kerr-nonlinearity and stimulated-Brillouin-scattering (SBS) characteristics of our fabricated Bi-NLF are experimentally investigated. The Bi-NLF is found to have the superior advantage of a significantly high SBS threshold in addition to its ultrahigh Kerr nonlinearity γ of ∼1100 W-1·km-1, compared to the conventional silica-based highly nonlinear fiber. Next, the authors perform an experiment for the FWM-based wavelength conversion of a non-return-to-zero (NRZ) signal within a 40-cm length of the Bi-NLF fusion spliced to standard silica fibers by using a continuous-wave (CW) high-power pump beam. Error-free tunable wavelength conversion over a 10-nm bandwidth is readily achieved. No SBS-suppression scheme is employed for the pump due to the high SBS threshold, which simplifies the system configuration and improves the quality of the wavelength-converted signal.

Published in:

Journal of Lightwave Technology  (Volume:24 ,  Issue: 1 )