By Topic

Electrochemical process for the lamination of magnetic cores in thin-film magnetic components

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
M. Brunet ; Tyndall Nat. Inst., Cork, Ireland ; T. O'Donnell ; A. M. Connell ; P. McCloskey
more authors

The lamination of the core in thin film magnetic components is necessary to reduce the eddy current losses of the structure at high frequencies. The usual way to achieve lamination of the core is by physical vapor deposition (PVD) techniques. These methods are however costly and the deposition of layers is non selective. In this article, an almost entirely aqueous-based electrochemical process for the lamination of magnetic cores is presented. The process uses an electrodepositable photoresist Eagle 2100 ED codeposited with a catalyst (palladium). The Eagle layer is left as an insulator and the catalyst allows the activation of the layer for subsequent metallization. The process can be reproduced as many times as required for producing the multilayers. It is also selective: it does not require multiple photolithography steps. As a demonstration of the multilayer process, a core constituted of two layers of Ni80Fe20 (6 μm each layer), separated by an Eagle insulating layer, electroplated over three-dimensional structures, was produced.

Published in:

Journal of Microelectromechanical Systems  (Volume:15 ,  Issue: 1 )