By Topic

Run-to-run failure detection and diagnosis using neural networks and Dempster-Shafer theory: an application to excimer laser ablation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. Setia ; Packaging Res. Center, Georgia Inst. of Technol., Atlanta, USA ; G. S. May

The formation of microvias in multilayer substrates is a critical factor in microelectronic packaging manufacturing. Such microstructures can be produced efficiently by excimer laser ablation. Thus, laser ablation systems are evolving to a level where the need to offset high capital equipment investment and lower equipment downtime are imminent. This paper presents a methodology for inline failure detection and diagnosis of the excimer laser ablation process. The methodology employs response data originating directly from the equipment and characterization of microvias formed by the ablation process. Neural network (NN) models are trained and validated based on this data to generate evidential belief for potential sources of deviations in the responses. Dempster-Shafer (D-S) theory is adopted for evidential reasoning. Successful failure detection is achieved in 100% of 19 possible failure scenarios. Moreover, successful failure diagnosis is also achieved with only a single false alarm occurring in the 19 failure scenarios.

Published in:

IEEE Transactions on Electronics Packaging Manufacturing  (Volume:29 ,  Issue: 1 )