By Topic

Analysis and Design of High Power Interleaved Boost Converters for Fuel Cell Distributed Generation System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Haiping Xu ; Inst. of Electr. Eng., Chinese Acad. of Sci., Beijing ; Ermin Qiao ; Xin Guo ; Xuhui Wen
more authors

This article proposes a novel topology of high power interleaved boost converter for fuel cell. With thorough analysis of the operating principle of the converter, eight equivalent sub-circuits are described. According to the waveforms of the inductor current, the operation modes of the converter are classified to six kinds, including CCM (continuous conducting mode) and DCM (discontinuous conducting mode), and the uniform state-space averaged model of the converter in CCM and DCM are developed. Based on the transfer function, the two-loop controllers are designed, and a prototype of 150 kW converter that is controlled by DSP-320F2407 is constructed. The volume and weight of the proposed converter are decreased 1/3 than conventional converter and the efficiency is over 97%. The experimental results show that the converter has excellent electrical characteristics, and it can be applied in the fuel cell distributed generation system

Published in:

Power Electronics Specialists Conference, 2005. PESC '05. IEEE 36th

Date of Conference:

16-16 June 2005