By Topic

Unequal error protection for convolutional codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
V. Pavlushkov ; Dept. of Inf. Technol., Lund Univ., Sweden ; R. Johannesson ; V. V. Zyablov

In this correspondence, unequal error-correcting capabilities of convolutional codes are studied. For errors in the information symbols and code symbols, the free input- and output-distances, respectively, serve as "unequal" counterparts to the free distance. When communication takes place close to or above the channel capacity the error bursts tend to be long and the free distance is not any longer useful as the measure of the error correcting capability. Thus, the active burst distance for a given output and the active burst distance for a given input are introduced as "unequal" counterparts to the active burst distance and improved estimates of the unequal error-correcting capabilities of convolutional codes are obtained and illustrated by examples. Finally, it is shown how to obtain unequal error protection for both information and code symbols using woven convolutional codes.

Published in:

IEEE Transactions on Information Theory  (Volume:52 ,  Issue: 2 )