By Topic

Error exponents for AR order testing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Boucheron ; Lab. de Probabilites et Modeles Aleatoires, Univ. Paris VII-Denis Diderot, France ; E. Gassiat

This paper is concerned with error exponents in testing problems raised by autoregressive (AR) modeling. The tests to be considered are variants of generalized likelihood ratio testing corresponding to traditional approaches to autoregressive moving-average (ARMA) modeling estimation. In several related problems, such as Markov order or hidden Markov model order estimation, optimal error exponents have been determined thanks to large deviations theory. AR order testing is specially challenging since the natural tests rely on quadratic forms of Gaussian processes. In sharp contrast with empirical measures of Markov chains, the large deviation principles (LDPs) satisfied by Gaussian quadratic forms do not always admit an information-theoretic representation. Despite this impediment, we prove the existence of nontrivial error exponents for Gaussian AR order testing. And furthermore, we exhibit situations where the exponents are optimal. These results are obtained by showing that the log-likelihood process indexed by AR models of a given order satisfy an LDP upper bound with a weakened information-theoretic representation.

Published in:

IEEE Transactions on Information Theory  (Volume:52 ,  Issue: 2 )