By Topic

An Aloha protocol for multihop mobile wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Baccelli, F. ; ENS-INRIA, Paris, France ; Blaszczyszyn, B. ; Muhlethaler, P.

An Aloha-type access control mechanism for large mobile, multihop, wireless networks is defined and analyzed. This access scheme is designed for the multihop context, where it is important to find a compromise between the spatial density of communications and the range of each transmission. More precisely, the analysis aims at optimizing the product of the number of simultaneously successful transmissions per unit of space (spatial reuse) by the average range of each transmission. The optimization is obtained via an averaging over all Poisson configurations for the location of interfering mobiles, where an exact evaluation of signal over noise ratio is possible. The main mathematical tools stem from stochastic geometry and are spatial versions of the so-called additive and max shot noise processes. The resulting medium access control (MAC) protocol exhibits some interesting properties. First, it can be implemented in a decentralized way provided some local geographic information is available to the mobiles. In addition, its transport capacity is proportional to the square root of the density of mobiles which is the upper bound of Gupta and Kumar. Finally, this protocol is self-adapting to the node density and it does not require prior knowledge of this density.

Published in:

Information Theory, IEEE Transactions on  (Volume:52 ,  Issue: 2 )