By Topic

Dynamic Control of a Bipedal Walking Robot actuated with Pneumatic Artificial Muscles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
B. Vanderborght ; Vrije Universiteit Brussel Department of Mechanical Engineering Pleinlaan 2, 1050 Brussel, Belgium ; B. Verrelst ; R. van Ham ; J. Vermeulen
more authors

This paper reports on the control structure of the pneumatic biped Lucy. The robot is actuated with pleated pneumatic artificial muscles, which have interesting characteristics that can be exploited for legged machines. They have a high power to weight ratio, an adaptable compliance and they can reduce impact effects. The discussion of the control architecture focusses on the joint trajectory generator and the tracking controller which is divided in four parts: a computed torque module, an inverse delta-p unit, a local PI controller and a bang-bang pressure controller. The control design is divided into single support and double support where specifically the computed torque differs for these two phases. A full hybrid dynamic simulation model is used to evaluate the control architecture of the biped. This simulator combines the dynamical behaviour of the robot with the thermodynamical effects that take place in the muscle-valves system. The observed hardware limitations of the real robot and expected model errors are taken into account in order to give a realistic qualitative evaluation of the control performance and to test the robustness. Finally the first results of the incorporation of this control architecture in the real biped Lucy are given.

Published in:

Proceedings of the 2005 IEEE International Conference on Robotics and Automation

Date of Conference:

18-22 April 2005