By Topic

A latent semantic indexing based method for solving multiple instance learning problem in region-based image retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xin Chen ; Dept. of Comput. & Inf. Sci., Alabama Univ., Birmingham, AL, USA ; Chengcui Zhang ; Shu-Ching Chen ; Min Chen

Relevance feedback (RF) is a widely used technique in incorporating user's knowledge with the learning process for content-based image retrieval (CBIR). As a supervised learning technique, it has been shown to significantly increase the retrieval accuracy. However, as a CBIR system continues to receive user queries and user feedbacks, the information of user preferences across query sessions are often lost at the end of search, thus requiring the feedback process to be restarted for each new query. A few works targeting long-term learning have been done in general CBIR domain to alleviate this problem. However, none of them address the needs and long-term similarity learning techniques for region-based image retrieval. This paper proposes a latent semantic indexing (LSI) based method to utilize users' relevance feedback information. The proposed region-based image retrieval system is constructed on a multiple instance learning (MIL) framework with one-class support vector machine (SVM) as its core. Experiments show that the proposed method can better utilize users' feedbacks of previous sessions, thus improving the performance of the learning algorithm (one-class SVM).

Published in:

Multimedia, Seventh IEEE International Symposium on

Date of Conference:

12-14 Dec. 2005