By Topic

Design of a 128-mb SOI DRAM using the floating body cell (FBC)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Ohsawa, T. ; SoC R&D Center, Toshiba Corp. Semicond. Co., Kanagawa, Japan ; Fujita, K. ; Hatsuda, K. ; Higashi, T.
more authors

A 128-Mb SOI DRAM has been developed featuring the floating body cell (FBC). To keep the cell data state from being degraded by the word-line (WL) disturb due to the charge pumping and to reduce the refresh busy rate, a sense amplifier (S/A) is arranged for every bit-line (BL) and replenishes data "1" cells' bodies with holes which are lost by the disturb in every read and write cycle. The power is reduced by operating the S/As asymmetrically between the selected and the unselected thanks to that the number of holes to be replenished in the unselected S/As for charge pumping is two order of magnitude smaller than that required for writing the data "1". The multi-pair averaging of dummy cells generates a very accurate reference current for distinguishing the data "1" and "0" and a Monte Carlo simulation shows that it achieves a sensing scheme robust enough to realize all good parts of the DRAM with a reasonable amount of redundancy. The cell's feature of quasi-nondestructive read-out is also advantageous for making an SRAM interface of the DRAM or hiding refresh from uses without sacrificing the access time.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:41 ,  Issue: 1 )