By Topic

Silicone rubber dielectrics modified by inorganic fillers for outdoor high voltage insulation applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Cherney, E.A. ; Waterloo Univ., Ont., Canada

The paper discusses the mechanisms by which inorganic fillers in silicone rubber dielectrics enhance the properties of thermal conductivity, relative permittivity, and electrical conductivity making them useful in outdoor high voltage insulation applications. The addition of alumina trihydrate or silica fillers to silicone elastomers, forming binary composites with enhanced thermal conductivity, is discussed in relation to filler type, particle size, shape, and concentration, and its use as a housing material for non-ceramic insulators to minimize material erosion at dry band arcing sites by lowering hot spot temperature. Also discussed is the enhanced relative permittivity of silicone dielectrics that is obtained through the addition of barium titanate powder which can be further increased with the addition of aluminium powder forming a tertiary composite, resulting in a significant grading of the surface electric field when applied as a housing material to high voltage bushings. Controlled electrical conductivity of silicone dielectrics is discussed through the use of antimony-doped tin oxide filler binary composites and when applied as a housing material to outdoor bushings, the pollution performance is greatly enhanced.

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:12 ,  Issue: 6 )