Cart (Loading....) | Create Account
Close category search window

A Power-Aware Run-Time System for High-Performance Computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hsu, C.-H. ; Los Alamos National Laboratory ; Wu-chun Feng

For decades, the high-performance computing (HPC) community has focused on performance, where performance is defined as speed. To achieve better performance per compute node, microprocessor vendors have not only doubled the number of transistors (and speed) every 18-24 months, but they have also doubled the power densities. Consequently, keeping a large-scale HPC system functioning properly requires continual cooling in a largemachine room, thus resulting in substantial operational costs. Furthermore, the increase in power densities has led (in part) to a decrease in system reliability, thus leading to lost productivity. To address these problems, we propose a power-aware algorithm that automatically and transparently adapts its voltage and frequency settings to achieve significant power reduction and energy savings with minimal impact on performance. Specifically, we leverage a commodity technology called "dynamic voltage and frequency scaling" to implement our power-aware algorithm in the run-time system of commodity HPC systems.

Published in:

Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference

Date of Conference:

12-18 Nov. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.