By Topic

Power-constrained hybrid BIST test scheduling in an abort-on-first-fail test environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Z. He ; Embedded Syst. Lab., Linkoping Univ., Sweden ; G. Jervan ; Z. Peng ; P. Eles

This paper presents a method for power-constrained system-on-chip test scheduling in an abort-on-first-fail environment where the test is terminated as soon as a fault is detected. We employ the defect probabilities of individual cores to guide the scheduling, such that the expected total test time is minimized and the peak power constraint is satisfied. Based on a hybrid BIST architecture where a combination of deterministic and pseudorandom test sequences is used, the power-constrained test scheduling problem can be formulated as an extension of the two-dimensional rectangular packing problem and a heuristic has been proposed to calculate the near optimal order of different test sequences. The method is also generalized for both test-per-clock and test-per-scan approaches. Experimental results have shown that the proposed heuristic is efficient to find a near optimal test schedule with a low computation overhead.

Published in:

8th Euromicro Conference on Digital System Design (DSD'05)

Date of Conference:

30 Aug.-3 Sept. 2005