By Topic

Experiments with fast Fourier transform, linear predictive and cepstral coefficients in dysarthric speech recognition algorithms using hidden Markov model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
P. D. Polur ; Dept. of Biomed. Eng., Virginia Commonwealth Univ., Richmond, VA, USA ; G. E. Miller

In this study, a hidden Markov Model was constructed and conditions were investigated that would provide improved performance for a dysarthric speech (isolated word) recognition system. The speaker dependant system was intended to act as an assistive/control tool. A small size vocabulary spoken by three cerebral palsy subjects was chosen. Fast Fourier transform, linear predictive, and Mel frequency cepstral coefficients extracted from data provided training input to several whole-word hidden Markov model configurations. The effect of model structure, number of states, and frame rates were also investigated. It was noted that a 10-state ergodic model using 15 msec frames was better than other configurations. Furthermore, it was found that a Mel cepstrum based model outperformed a fast Fourier transform and linear prediction based model. The system offers effective and robust application as a rehabilitation and/or control tool to assist dysarthric motor impaired individuals.

Published in:

IEEE Transactions on Neural Systems and Rehabilitation Engineering  (Volume:13 ,  Issue: 4 )