By Topic

XCS with computed prediction in continuous multistep environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
P. L. Lanzi ; Dip. di Elettronica e Informazione, Politecnico di Milano, Italy ; D. Loiacono ; S. W. Wilson ; D. E. Goldberg

We apply XCS with computed prediction (XCSF) to tackle multistep reinforcement learning problems involving continuous inputs. In essence we use XCSF as a method of generalized reinforcement learning. We show that in domains involving continuous inputs and delayed rewards XCSF can evolve compact populations of accurate maximally general classifiers which represent the optimal solution to the target problem. We compare the performance of XCSF with that of tabular Q-learning adapted to the continuous domains considered here. The results we present show that XCSF can converge much faster than tabular techniques while producing more compact solutions. Our results also suggest that when exploration is less effective in some areas of the problem space, XCSF can exploit effective generalizations to extend the evolved knowledge beyond the frequently explored areas. In contrast, in the same situations, the convergence speed of tabular Q-learning worsens.

Published in:

2005 IEEE Congress on Evolutionary Computation  (Volume:3 )

Date of Conference:

2-5 Sept. 2005