Cart (Loading....) | Create Account
Close category search window
 

Efficiently minimizing expensive cost functions with a hybrid evolutionary algorithm using clustering and a derivative-free optimizer: preliminary results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tenne, Y. ; Sch. of Aerosp., Mech. & Mechatronic Eng., Sydney Univ., NSW, Australia ; Armfield, S.W.

A novel hybrid algorithm is presented to efficiently locate the global minimum of a function where each function evaluation is expensive and no expression is available for the function nor its derivatives. The hybrid employs an evolutionary algorithm, a density cluster analysis algorithm and a derivate-free optimizer in a multi-level hierarchical structure. The hybrid algorithm utilizes information generated during the minimization to reduce the number of function evaluations and to improve its domain exploration. The hybrid was compared to an evolutionary algorithm and to a multi-start derivative-free optimizer since both are candidate algorithms to handle this global minimization problem. The algorithms were tested using a small and a large domain. Test results showed that while the evolutionary algorithm did not progress much after an initial phase the hybrid maintained a high rate of minimization throughout and accordingly provided a final result which was on average O(106) more accurate for the small domain and O(108) more accurate for the large domain. Furthermore, the number of function evaluations required by the multi-start derivative-free optimizer was affected by the initial random population and accordingly by an increase in the domain size. In contrast the hybrid was not affected since it employed the explorative evolutionary algorithm phase and thus was able to locate better starting nodes in a larger domain.

Published in:

Evolutionary Computation, 2005. The 2005 IEEE Congress on  (Volume:3 )

Date of Conference:

2-5 Sept. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.