By Topic

Novel GaP-based dilute nitride Ga(NAsP)GaP laser material system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Kunert, B. ; Dept. of Phys., Philipps Univ., Marburg ; Volz, K. ; Koch, J. ; Torunski, T.
more authors

Realizing monolithic optoelectronic integrated circuits (OIECs) on silicon substrate would open up an exciting and completely new field of applications, i.e. optical interconnects at the chip level. In the past a lot of effort has been devoted to the growth of standard direct band gap III-V compound semiconductors on Si substrate, i.e. GaAs/Si or InP/Si. Due to the large lattice mismatch of these materials to the Si substrate large densities of threading dislocations are formed in the layers, preventing any long-term stable lasing operation of corresponding device structures. In this study the authors present a novel direct band gap material ( Ga(NAsP) ), which can be grown lattice-matched to GaP. Due to the similar lattice constant of GaP and Si, this novel material system might lead to the real monolithic integration of III/V-based optoelectronics and Si-based microelectronics in the near future

Published in:

Device Research Conference Digest, 2005. DRC '05. 63rd  (Volume:2 )

Date of Conference:

22-22 June 2005