By Topic

Analysis and design of parallel mechanisms with flexure joints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Byoung Hun Kang ; Dept. of Mech. Design Eng., Korea Polytech. Univ., Siheung City, South Korea ; J. T. -Y. Wen ; N. G. Dagalakis ; J. J. Gorman

Flexure joints are frequently used in precision-motion stages and microrobotic mechanisms due to their monolithic construction. The joint compliance, however, can affect the static and dynamic performance of the overall mechanism. In this paper, we consider the analysis and design of general platform-type parallel mechanisms containing flexure joints. Based on static performance measures such as task-space stiffness and manipulability, and constraints such as joint stress, mechanism size, and workspace volume, we pose the design problem as a multiobjective optimization. We first calculate the Pareto frontier, which can then be used to select the desired design parameters based on secondary criteria, such as performance sensitivity and dynamic characteristics. To facilitate design iteration, we apply the pseudo rigid-body approach with a lumped approximation of the flexure joints. A planar mechanism is used to illustrate the analysis and design techniques.

Published in:

IEEE Transactions on Robotics  (Volume:21 ,  Issue: 6 )