By Topic

Evaluation of the low-frequency neutral-point voltage oscillations in the three-level inverter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pou, J. ; Power Quality & Renewable Energy, Tech. Univ. of Catalonia, Spain ; Pindado, R. ; Boroyevich, D. ; Rodriguez, P.

The nearest vectors to the reference vector are commonly used in space-vector modulation (SVM) strategies. The main advantages of these modulation strategies are the low switching frequencies of the devices, the good output voltage spectra, and the low electromagnetic interference. However, when these techniques are applied to the three-level neutral-point (NP)-clamped inverter, low-frequency oscillations appear in the NP voltage for some operating conditions. As a result, the value of the dc-link capacitors must be increased in order to attenuate such oscillations. In this paper, these amplitudes are quantified for two modulation strategies that use nearest vectors to the reference vector. Owing to the nondimensional variables used in the analysis, the information provided will help for the calculation of the dc-link capacitors in a given specific application. Simulated and experimental examples are presented.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:52 ,  Issue: 6 )