By Topic

Stator and rotor resistance observers for induction motor drive using fuzzy logic and artificial neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Karanayil, B. ; Sch. of Electr. Eng. & Telecommun., Univ. of New South Wales, Sydney, NSW, Australia ; Rahman, M.F. ; Grantham, C.

This paper presents a new observer for the rotor resistance of an indirect vector controlled induction motor drive using artificial neural networks supplemented by a fuzzy logic based stator resistance observer. The error between the rotor flux linkages based on a neural network model and a voltage model is back propagated to adjust the weights of the neural network model for the rotor resistance estimation. The error between the measured stator current and its corresponding estimated value is mapped to a change in stator resistance with a proposed fuzzy logic. The stator resistance observed with this approach is used to correct the rotor resistance observer using neural networks. The performance of these observers and torque and flux responses of the drive, together with these estimators, are investigated with the help of simulations. Both modeling and experimental data on tracking performances of these observers are presented. With this approach accurate rotor resistance estimation was achieved and was made insensitive to stator resistance variations both in modeling and experiment.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:20 ,  Issue: 4 )