By Topic

CRACK: qualitative reasoning about fatigue and fracture in steel bridges

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
W. M. K. Roddis ; Dept. of Civil Eng., Kansas Univ., Lawrence, KS, USA ; J. L. Martin

The consultant reasoning about cracking knowledge (CRACK) system, which uses qualitative reasoning to analyze fatigue and fracture in steel bridges, is described. CRACK's architecture includes three reasoning levels-heuristic, qualitative, and quantitative-linked by a common representation of the bridge's physical structure. CRACK explains a failure by matching a crack progression sequence to the observed facts. The system establishes the type of problem using design critiques, predictive modeling, or failure analysis describes the problem by gathering information on the girder's geometry, service history, material properties, and observed symptoms. It then hypothesizes a cause, qualitatively simulates possible crack progression sequences to guide quantitative analysis, calculates the fracture mechanics to determine critical crack sizes and fatigue lives, and evaluates the hypothesis. Finally it states a conclusion. Several difficulties that arose in developing a simple, theoretically defensible, qualitative model which translates numerical relationships into a correct set of behaviors are discussed.<>

Published in:

IEEE Expert  (Volume:7 ,  Issue: 4 )