By Topic

On the unique games conjecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Khot, S. ; Georgia Inst. of Technol., Atlanta, GA, USA

Summary form only given. The discovery of the PCP theorem in 1992 led to an avalanche of hardness of approximation results, i.e. results showing that for certain NP hard optimization problems, computing even approximate solutions is hard. However, for many fundamental problems, obtaining satisfactory hardness results seems out of reach of current techniques. The unique games conjecture (UGC) was proposed in 2002 as an approach towards settling some of these open problems. A 2-Prover-1-Round game is called unique if for every answer of either prover, there is exactly one answer of the other prover if the verifier is to accept. The UGC states that for every constant ε > 0, it is NP hard to distinguish whether the optimal strategy of provers in a unique 2P1R game has acceptance probability at least 1 - ε or at most ε. The answer size k = k(ε) could be an arbitrary function of ε. The UGC has been shown to imply optimal hardness results for vertex cover and MAX-CUT problems, and superconstant hardness results for sparsest cut and Min-2SAT-Deletion problems. A variation of the conjecture has been shown to imply hardness of coloring 3-colorable graphs with constantly many colors. Apart from these applications to hardness results, the UGC has led to important (unconditional) results in Fourier analysis, the theory of metric embeddings, and integrality gap results for semidefinite programming relaxations. The tutorial aims to give an overview of the UGC, its applications, and attempts to prove or disprove it.

Published in:

Foundations of Computer Science, 2005. FOCS 2005. 46th Annual IEEE Symposium on

Date of Conference:

23-25 Oct. 2005