Cart (Loading....) | Create Account
Close category search window
 

Modeling of glitches due to rise/fall asymmetry in current-steering digital-to-analog converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Andersson, K.O. ; Dept. of Electr. Eng., Linkoping Univ., Sweden ; Vesterbacka, M.

The current-steering digital-to-analog converter (DAC) is the most common type of DAC for high-speed applications. Glitches present in the DAC output contribute to nonlinear distortion in the DAC transfer characteristics degrading the circuit performance. One source of glitches is asymmetry in the settling behavior when switching on and off a current source. A behavioral-level model of this nonideal behavior is derived in this work. Further, a method with low computational complexity for estimating the influence of the modeled errors in the frequency domain is developed. This method can be utilized by circuit designers to derive circuit requirements for fulfilling a given frequency-domain specification, potentially relaxing the requirements compared with a worst-case analysis. Examples of model utilization are given in terms of an analytical examination and MATLAB simulations. A good agreement between simulated and analytical results is obtained.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:52 ,  Issue: 11 )

Date of Publication:

Nov. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.