Cart (Loading....) | Create Account
Close category search window
 

Localized bonding processes for assembly and packaging of polymeric MEMS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu-Chuan Su ; Dept. of Eng. & Syst. Sci., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Liwei Lin

Localized bonding schemes for the assembly and packaging of polymer-based microelectromechanical systems (MEMS) devices have been successfully demonstrated. These include three bonding systems of plastics-to-silicon, plastics-to-glass, and plastics-to-plastics combinations based on two bonding processes of localized resistive heating: 1) built-in resistive heaters and 2) reusable resistive heaters. In the prototype demonstrations, aluminum thin films are deposited and patterned as resistive heaters and plastic materials are locally melted and solidified for bonding. A typical contact pressure of 0.4 MPa is applied to assure intimate contact of the two bonding substrates and the localized bonding process is completed within less than 0.25 s of heating. It is estimated that the local temperature at the bonding interface can reach above 150°C while the substrate temperature away from the heaters can be controlled to be under 40°C during the bonding process. The approach of localized heating for bonding of plastic materials while maintaining low temperature globally enables direct sealing of polymer-based MEMS without dispensing additional adhesives or damaging preexisting, temperature-sensitive substances. Furthermore, water encapsulation by plastics-to-plastics bonding is successfully performed to demonstrate the capability of low temperature processing. As such, this technique can be applied broadly in plastic assembly, packaging, and liquid encapsulation for microsystems, including microfluidic devices.

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:28 ,  Issue: 4 )

Date of Publication:

Nov. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.