By Topic

Bayesian structural content abstraction for image authentication using Markov pixon model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wei Feng ; Sch. of Creative Media, City Univ. of Hong Kong, Kowloon, China ; Zhi-Qiang Liu

We present a hierarchical representation of image structure and use it for image content authentication. Firstly, we model the image with the Markov pixon random field. Within the Bayesian framework, the optimal label map and regional pixon map can be obtained, based on which we define a non-directed graph, or namely Bayesian structural content abstraction (BaSCA). This representation captures the spatial topology information of homogeneous regions as well as their finest scale and interactions. Then, an efficient optimization scheme has been proposed to iteratively minimize the learning error to all content-identical image samples generated by an acceptable operation set defined by the user. In addition, we use the regional pixon map to remove spurious vertices and thus to establish a BaSCA hierarchy naturally. The BaSCA itself and its features can act as the signature of the protected image. Our experimental results show that the proposed approach has much less false positive and comparable false negative probability compared with the existing methods.

Published in:

2005 International Conference on Machine Learning and Cybernetics  (Volume:9 )

Date of Conference:

18-21 Aug. 2005