By Topic

Document clustering using locality preserving indexing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Deng Cai ; Dept. of Comput. Sci., Illinois Univ., Urbana, IL, USA ; Xiaofei He ; Jiawei Han

We propose a novel document clustering method which aims to cluster the documents into different semantic classes. The document space is generally of high dimensionality and clustering in such a high dimensional space is often infeasible due to the curse of dimensionality. By using locality preserving indexing (LPI), the documents can be projected into a lower-dimensional semantic space in which the documents related to the same semantics are close to each other. Different from previous document clustering methods based on latent semantic indexing (LSI) or nonnegative matrix factorization (NMF), our method tries to discover both the geometric and discriminating structures of the document space. Theoretical analysis of our method shows that LPI is an unsupervised approximation of the supervised linear discriminant analysis (LDA) method, which gives the intuitive motivation of our method. Extensive experimental evaluations are performed on the Reuters-21578 and TDT2 data sets.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 12 )