By Topic

Communication and memory optimal parallel data cube construction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ruoming Jin ; Dept. of Comput. Sci. & Eng., Ohio State Univ., Columbus, OH, USA ; Vaidyanathan, K. ; Ge Yang ; Agrawal, G.

Data cube construction is a commonly used operation in data warehouses. Because of the volume of data that is stored and analyzed in a data warehouse and the amount of computation involved in data cube construction, it is natural to consider parallel machines for this operation. This paper addresses a number of algorithmic issues in parallel data cube construction. First, we present an aggregation tree for sequential (and parallel) data cube construction, which has minimally bounded memory requirements. An aggregation tree is parameterized by the ordering of dimensions. We present a parallel algorithm based upon the aggregation tree. We analyze the interprocessor communication volume and construct a closed form expression for it. We prove that the same ordering of the dimensions in the aggregation tree minimizes both the computational and communication requirements. We also describe a method for partitioning the initial array and prove that it minimizes the communication volume. Finally, in the cases when memory may be a bottleneck, we describe how tiling can help scale sequential and parallel data cube construction. Experimental results from implementation of our algorithms on a cluster of workstations show the effectiveness of our algorithms and validate our theoretical results.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:16 ,  Issue: 12 )