By Topic

A dual round-robin algorithm for combined input-crosspoint-queued switches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yanfeng Zheng ; Inst. of Comput. Technol., Chinese Acad. of Sci., Beijing, China ; Wen Gao

Compared with a bufferless crossbar switch, a combined input-crosspoint-queued (CICQ) switch has better scalability owing to its distributed scheduling. Although the previously proposed round-robin algorithms achieve 100% throughput asymptotically under uniform traffic, these algorithms do not provide a satisfactory performance under nonuniform traffic. In this paper, we propose an efficient round-robin algorithm for a CICQ switch with one-cell cross point buffers. With our algorithm, each input arbiter is associated with dual round-robin pointers. Unlike the existing round-robin algorithms, our algorithm has distinctive round-robin pointer updating rules which are powerful to cope with nonuniform traffic patterns. Extensive simulation results show that our algorithm achieves a satisfactory performance under both uniform and a broad class of nonuniform traffic patterns.

Published in:

Proceedings. 14th International Conference on Computer Communications and Networks, 2005. ICCCN 2005.

Date of Conference:

17-19 Oct. 2005