By Topic

Improving energy efficiency by making DRAM less randomly accessed

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hai Huang ; Michigan Univ., Ann Arbor, MI, USA ; Shin, K.G. ; Lefurgy, C. ; Keller, T.

Existing techniques manage power for the main memory by passively monitoring the memory traffic, and based on which, predict when to power down and into which low-power state to transition. However, passively monitoring the memory traffic can be far from being effective as idle periods between consecutive memory accesses are often too short for existing power-management techniques to take full advantage of the deeper power-saving state implemented in modem DRAM architectures. In this paper, the authors proposed a new technique that will actively reshape the memory traffic to coalesce short idle periods - which were previously unusable for power management - into longer ones, thus enabling existing techniques to effectively exploit idleness in the memory.

Published in:

Low Power Electronics and Design, 2005. ISLPED '05. Proceedings of the 2005 International Symposium on

Date of Conference:

8-10 Aug. 2005