By Topic

The contribution of field-induced morphological change to the electrical aging and breakdown of polyethylene

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jones, J.P. ; Sch. of Informatics, Univ. of Wales, Bangor, UK ; Llewellyn, J.P. ; Lewis, T.J.

A brief review of the early literature is given which provides evidence that electrically-induced mechanical stresses make an important contribution to the electrical breakdown of solid dielectrics. Special attention is given to polyethylene and the manner in which this semi-crystalline polymer yields under mechanical stress by microvoid, crack and craze development in the amorphous phase between the lamellar crystallites. The nature of the forces induced by an electrical field is considered and it is shown that a significant component of tensile stress is generated in a direction orthogonal to the field and can become large as breakdown is approached. This suggests a correlation between the responses of the polymer to mechanical and electrical stresses and consequently the importance of morphology in determining the latter. The likely effect of field-induced morphological change on charge transport and electrode processes is described and its underlying contribution to possible aging markers for polyethylene, such as high field conduction, electroluminescence, space charge and charge packets is considered.

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:12 ,  Issue: 5 )