Cart (Loading....) | Create Account
Close category search window
 

Collective caching: application-aware client-side file caching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Wei-Keng Liao ; Electr. & Comput. Eng. Dept., Northwestern Univ., Evanston, IL, USA ; Coloma, Kenin ; Choudhary, A. ; Ward, L.
more authors

Parallel file subsystems in today's high-performance computers adopt many I/O optimization strategies that were designed for distributed systems. These strategies, for instance client-side file caching, treat each I/O request process independently, due to the consideration that clients are unlikely related with each other in a distributed environment. However, it is inadequate to apply such strategies directly in the high-performance computers where most of the I/O requests come from the processes that work on the same parallel applications. We believe that client-side caching could perform more effectively if the caching subsystem is aware of the process scope of an application and regards all the application processes as a single client. In this paper, we propose the idea of "collective caching" which coordinates the application processes to manage cache data and achieve cache coherence without involving the I/O servers. To demonstrate this idea, we implemented a collective caching subsystem at user space as a library, which can be incorporated into any message passing interface implementation to increase its portability. The performance evaluation is presented with three I/O benchmarks on an IBM SP using its native parallel file system, GPFS. Our results show significant performance enhancement obtained by collective caching over the traditional approaches.

Published in:

High Performance Distributed Computing, 2005. HPDC-14. Proceedings. 14th IEEE International Symposium on

Date of Conference:

24-27 July 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.