By Topic

Building robust wavelet estimators for multicomponent images using Stein's principle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Benazza-Benyahia ; Unite de Recherche en Imagerie Satellitaire et ses Applications, Ecole Superieure des Commun., Tunis, Tunisia ; J. -C. Pesquet

Multichannel imaging systems provide several observations of the same scene which are often corrupted by noise. In this paper, we are interested in multispectral image denoising in the wavelet domain. We adopt a multivariate statistical approach in order to exploit the correlations existing between the different spectral components. Our main contribution is the application of Stein's principle to build a new estimator for arbitrary multichannel images embedded in additive Gaussian noise. Simulation tests carried out on optical satellite images show that the proposed method outperforms conventional wavelet shrinkage techniques.

Published in:

IEEE Transactions on Image Processing  (Volume:14 ,  Issue: 11 )