By Topic

Social computing and weighting to identify member roles in online communities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nolker, R.D. ; Maryland Univ., Baltimore County, MD, USA ; Lina Zhou

As more and more people join online communities, the ability to better understand members' roles becomes critical to preserving and improving the health of those communities. We propose a novel approach to identifying key members and their roles by discovering implicit knowledge from online communities. Viewing an online community as a social network connected by poster-poster relationships, the approach takes advantage of the strengths of social network analysis and weighting schemes from information retrieval in identifying key members. Experimental studies were carried out to empirically evaluate the proposed approach with real-world data collected from a Usenet bulletin board over a one year period. The results showed that the proposed approach can not only identify prominent members whose behaviors are community supportive but also filter chatters whose behaviors are superficial to the online community. The findings have broad implications for online communities by allowing moderators to better support their members and by enabling members to better understand the conversation space.

Published in:

Web Intelligence, 2005. Proceedings. The 2005 IEEE/WIC/ACM International Conference on

Date of Conference:

19-22 Sept. 2005