By Topic

Sensorimotor rhythm-based brain-computer interface (BCI): feature selection by regression improves performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
McFarland, D.J. ; New York State Dept. of Health, State Univ. of New York, Albany, NY, USA ; Wolpaw, J.R.

People can learn to control electroencephalogram (EEG) features consisting of sensorimotor rhythm amplitudes and can use this control to move a cursor in one or two dimensions to a target on a screen. In the standard one-dimensional application, the cursor moves horizontally from left to right at a fixed rate while vertical cursor movement is continuously controlled by sensorimotor rhythm amplitude. The right edge of the screen is divided among 2-6 targets, and the user's goal is to control vertical cursor movement so that the cursor hits the correct target when it reaches the right edge. Up to the present, vertical cursor movement has been a linear function of amplitude in a specific frequency band [i.e., 8-12 Hz (mu) or 18-26 Hz (beta)] over left and/or right sensorimotor cortex. The present study evaluated the effect of controlling cursor movement with a weighted combination of these amplitudes in which the weights were determined by an regression algorithm on the basis of the user's past performance. Analyses of data obtained from a representative set of trained users indicated that weighted combinations of sensorimotor rhythm amplitudes could support cursor control significantly superior to that provided by a single feature. Inclusion of an interaction term further improved performance. Subsequent online testing of the regression algorithm confirmed the improved performance predicted by the offline analyses. The results demonstrate the substantial value for brain-computer interface applications of simple multivariate linear algorithms. In contrast to many classification algorithms, such linear algorithms can easily incorporate multiple signal features, can readily adapt to changes in the user's control of these features, and can accommodate additional targets without major modifications.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:13 ,  Issue: 3 )