Cart (Loading....) | Create Account
Close category search window
 

An EMG-to-force processing approach for determining ankle muscle forces during normal human gait

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bogey, R.A. ; Rehabilitation Inst. of Chicago, IL, USA ; Perry, J. ; Gitter, A.J.

Muscle forces move our limbs. These forces must be estimated with indirect techniques, as direct measurements are neither generally possible nor practical. An electromyography (EMG)-to-force processing technique was developed. Ankle joint moments and, by extension, ankle muscle forces were calculated. The ankle moment obtained by inverse dynamics was calculated for ten normal adults during free speed gait. There was close correlation between inverse dynamics ankle moments and moments determined by the EMG-to-force processing approach. Muscle forces were determined. The gait peak Achilles tendon force occurred in late single limb support. Peak force observed (2.9 kN) closely matched values obtained where force transducers were used to obtain in vivo muscle forces (2.6 kN). The EMG-to-force processing model presented here appears to be a practical means to determine in vivo muscle forces.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:13 ,  Issue: 3 )

Date of Publication:

Sept. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.