By Topic

Analytical analysis and finite element simulation of advanced membranes for silicon microphones

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. Fuldner ; Infineon Technol. AG, Munich, Germany ; A. Dehe ; R. Lerch

In this paper, advanced membrane designs are simulated in order to improve the sensitivity of micromachined silicon condenser microphones. Analytical analyzes and finite element simulations have been carried out to derive algebraic expressions for the mechanical compliance of corrugated membranes and membranes supported at spring elements. It is shown that the compliance of both types of membranes can be modeled with the help of an enhanced theory of circular membranes. For spring membranes, a numerically derived and design dependent constant takes into account the reduced suspension. The mechanical stress in corrugated membranes is calculated using a geometrical model and is confirmed by finite element simulations. A very good agreement between theory and experimental results is demonstrated for spring membranes of different shape and for membranes with varying number of corrugations. In a silicon microphone application, a high electro-acoustical sensitivity up to 8.2 mV/Pa/V is achieved with a membrane diameter of only 1 mm.

Published in:

IEEE Sensors Journal  (Volume:5 ,  Issue: 5 )