By Topic

A Classification Approach Based on SVM for Electromagnetic Subsurface Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Massa ; Dept. of Inf. & Commun. Technol., Univ. of Trento, Italy ; A. Boni ; M. Donelli

In clearing terrains contaminated or potentially contaminated by landmines and/or unexploded ordnances (UXOs), a quick wide-area surveillance is often required. Nevertheless, the identification of dangerous areas (instead of the detection of each subsurface object) can be enough for some scenarios/applications, allowing a suitable level of security in a cost-saving way. In such a framework, this paper describes a probabilistic approach for the definition of risk maps. Starting from the measurement of the scattered electromagnetic field, the probability of occurrence of dangerous targets in an investigated subsurface area is determined through a suitably defined classifier based on a support vector machine. To assess the effectiveness of the proposed approach and to evaluate its robustness, selected numerical results related to a two-dimensional geometry are presented.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:43 ,  Issue: 9 )