By Topic

Parallel measurements of drug actions on erythrocytes by dielectrophoresis, using a three-dimensional electrode design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hubner, Y. ; Sch. of Eng., Univ. of Surrey, Guildford, UK ; Hoettges, K.F. ; Kass, G.E.N. ; Ogin, S.L.
more authors

A type of well-based assay that uses a laminated three-dimensional electrode design to characterise the effects of different drugs on red blood cells using dielectrophoresis is presented. The capability of the system to determine the effects of chemical agents on the electrophysiology of red blood cells is demonstrated using saponin and valinomycin as two examples of drugs that can penetrate the cell membrane and therefore change the dielectric properties of the cell. Light intensity changes are measured in the well over a period of time at various frequencies and the dielectric properties of the cells determined using an ellipsoidal multi-shell model. It is shown that the laminated electrode permits a high degree of automation and thus a high number of parallel experiments, which reduces both the time and effort needed to examine differences between populations of red blood cells. The technique is directly compatible with the industry-standard 1536 well-plate analysis technique.

Published in:

Nanobiotechnology, IEE Proceedings -  (Volume:152 ,  Issue: 4 )