Cart (Loading....) | Create Account
Close category search window
 

Effect of channel variation in IP/cdma2000 interconnection performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Paliwal, V. ; Broadband Networks Lab., Carleton Univ., Ottawa, Ont., Canada ; Larijani, P. ; Lambadaris, I. ; Nandy, B.

In order to support high data rate requirements and effectively manage scarce wireless resources, additional bandwidth channels are quite frequently allocated and taken away from mobile stations in 3G wireless data networks. A TCP sender connected to the mobile, on seeing ACKs coming at a faster pace after additional bandwidth allocation, turns overtly optimistic and injects data into the network in a more bursty manner that might be excessive for an intermediate router, thereby leading to loss of multiple packets and subsequent prolonged recovery and periods of underutilization. We characterize this problem using an analytical model for losses based on a continuous flow approximation as well as an extensive simulation setup. We also illustrate how bandwidth oscillations create more severe congestion than an increase in the number of users to the extent that even the RED algorithm is unable to check the sharp growth of queues. As a result, multiple packets are lost in a droptail fashion. We further demonstrate the dependence of congestion due to bandwidth allocation on the time during which mobiles' rates are increased and observe the degradation in performance for typical load scenarios.

Published in:

Communications, 2005. ICC 2005. 2005 IEEE International Conference on  (Volume:5 )

Date of Conference:

16-20 May 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.