By Topic

Newton-Type Algorithms for Dynamics-Based Robot Movement Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sung-Hee Lee ; Dept. of Comput. Sci., New York Univ., NY, USA ; Junggon Kim ; F. C. Park ; Munsang Kim
more authors

This paper describes Newton and quasi-Newton optimization algorithms for dynamics-based robot movement generation. The robots that we consider are modeled as rigid multibody systems containing multiple closed loops, active and passive joints, and redundant actuators and sensors. While one can, in principle, always derive in analytic form the equations of motion for such systems, the ensuing complexity, both numeric and symbolic, of the equations makes classical optimization-based movement-generation schemes impractical for all but the simplest of systems. In particular, numerically approximating the gradient and Hessian often leads to ill-conditioning and poor convergence behavior. We show in this paper that, by extending (to the general class of systems described above) a Lie theoretic formulation of the equations of motion originally developed for serial chains, it is possible to recursively evaluate the dynamic equations, the analytic gradient, and even the Hessian for a number of physically plausible objective functions. We show through several case studies that, with exact gradient and Hessian information, descent-based optimization methods can be forged into an effective and reliable tool for generating physically natural robot movements.

Published in:

IEEE Transactions on Robotics  (Volume:21 ,  Issue: 4 )