By Topic

Spatial distribution statistics for two-agent optimal navigation with cone-shaped local observation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jan De Mot ; Lab. for Inf. & Decision Syst., MIT, Cambridge, MA, USA ; E. Feron

In this paper, we study spatially synchronous two-agent navigation on a structured partially unknown graph. The general edge cost statistics are given, and the agents gather and share exact information on the cost of local edges. The agents purpose is to traverse the graph as efficiently as possible. In previous work, we formulate the problem as a dynamic program, and exploit the structure of an equivalent linear program to compute the optimal value function. Here, we use the optimal policy to formulate a Markov chain with an infinite number of states whose properties we analyze. We present a method that computes the steady state probability distribution of the agent separation, exploiting the repetitive structure of the Markov chain as the agent separation goes to infinity. The results confirms and quantify the intuition that the less rewards, the more beneficial for the agents to spread out.

Published in:

Proceedings of the 2005, American Control Conference, 2005.

Date of Conference:

8-10 June 2005