By Topic

Kolmogorov-Chaitin complexity of linear digital controllers implemented using fixed-point arithmetic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Whidborne, J.F. ; Dept. of Aerosp. Sci., Cranfield Univ., UK ; McKernan, J. ; Gu, D.-W.

The complexity of linear, fixed-point arithmetic, digital controllers is investigated from a Kolmogorov-Chaitin perspective. Based on the idea of Kolmogorov-Chaitin complexity, practical measures of complexity are developed for both state-space realizations, and for parallel and cascade realizations. The complexity of solutions to a restricted complexity controller benchmark problem is investigated using this measure. The results show that, from a Kolmogorov-Chaitin viewpoint, higher-order controllers with a shorter word-length may have a lower complexity but a better performance than lower-order controllers with longer word-length.

Published in:

Control, Automation, Robotics and Vision Conference, 2004. ICARCV 2004 8th  (Volume:3 )

Date of Conference:

6-9 Dec. 2004