Cart (Loading....) | Create Account
Close category search window
 

Chemical warfare agent detection using MEMS-compatible microsensor arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Meier, D.C. ; Chem. Sci. & Technol. Lab., Nat. Inst. of Stand. & Technol., Gaithersburg, MD, USA ; Taylor, C.J. ; Cavicchi, R.E. ; V, E.W.
more authors

Microsensors have been fabricated consisting of TiO2 and SnO2 sensing films prepared by chemical vapor deposition (CVD) on microelectromechanical systems array platforms. Response measurements from these devices to the chemical warfare (CW) agents GA (tabun), GB (sarin), and HD (sulfur mustard) at concentrations between 5 nmol/mol (ppb) and 200 ppb in dry air, as well as to CW agent simulants CEES (chloroethyl ethyl sulfide) and DFP (diisopropyl fluorophosphate) between 250 and 3000 ppb, are reported. The microsensors exhibit excellent signal-to-noise and reproducibility. The temperature of each sensor element is independently controlled by embedded microheaters that drive both the CVD process (375°C) and sensor operation at elevated temperatures (325°C-475°C). The concentration-dependent analyte response magnitude is sensitive to conditions under which the sensing films are grown. Sensor stability studies confirm little signal degradation during 14 h of operation. Use of pulsed (200 ms) temperature-programmed sensing over a broad temperature range (20°C-480°C) enhances analyte selectivity, since the resulting signal trace patterns contain primarily kinetic information that is unique for each agent tested.

Published in:

Sensors Journal, IEEE  (Volume:5 ,  Issue: 4 )

Date of Publication:

Aug. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.