Cart (Loading....) | Create Account
Close category search window
 

A system-level framework for evaluating area/performance/power trade-offs of VLIW-based embedded systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ascia, G. ; DIIT, Catania Univ., Italy ; Catania, V. ; Palesi, M. ; Patti, D.

Architectures based on very long instruction word (VLIW) have found fertile ground in multimedia electronic appliances thanks to their ability to exploit high degrees of instruction level parallelism (ILP) with a reasonable trade-off in complexity and silicon costs. In this case application specific instruction-set processor (ASIP) specialization may require not only manipulation of the instruction-set but also tuning of the architectural parameters of the processor (e.g. the number and type of functional units, register files, etc.) and the memory subsystem (cache size, associativity, etc.). Setting the parameters so as to optimize certain metrics requires the use of efficient design space exploration (DSE) strategies and also simulation tools (retargetable compilers and simulators) and accurate estimation models operating at a high level of abstraction. In this paper we present a framework for evaluation, in terms of performance, cost and power consumption, of a system based on a parameterized VLIW microprocessor together with the memory hierarchy subsystem following execution of a specific application. The framework, which can be freely downloaded from the Internet, implements a number of multi-objective DSE strategies to obtain Pareto-optimal configurations for the system.

Published in:

Design Automation Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and South Pacific  (Volume:2 )

Date of Conference:

18-21 Jan. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.