By Topic

A biologically-inspired clustering algorithm dependent on spatial data in sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wokoma, I. ; Electron. Eng., Univ. Coll. London, UK ; Shum, L.L. ; Sacks, L. ; Marshall, I.

Sensor networks in environmental monitoring applications aim to provide scientists with a useful spatio-temporal representation of the observed phenomena. This helps to deepen their understanding of the environmental signals that cover large geographic areas. In this paper, the spatial aspect of this data handling requirement is met by creating clusters in a sensor network based on the rate of change of an oceanographic signal with respect to space. Inspiration was drawn from quorum sensing, a biological process that is carried out within communities of bacterial cells. The paper demonstrates the control the user has over the sensitivity of the algorithm to the data variation and the energy consumption of the nodes while they run the algorithm.

Published in:

Wireless Sensor Networks, 2005. Proceeedings of the Second European Workshop on

Date of Conference:

31 Jan.-2 Feb. 2005