By Topic

Monitoring volcanic eruptions with a wireless sensor network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Werner-Allen, G. ; Harvard Univ., Boston, MA, USA ; Johnson, J. ; Ruiz, M. ; Lees, J.
more authors

This paper describes our experiences using a wireless sensor network to monitor volcanic eruptions with low-frequency acoustic sensors. We developed a wireless sensor array and deployed it in July 2004 at Volcan Tingurahua, an active volcano in central Ecuador. The network collected infrasonic (low-frequency acoustic) signals at 102 Hz, transmitting data over a 9 km wireless link to a remote base station. During the deployment, we collected over 54 hours of continuous data which included at least 9 large explosions. Nodes were time-synchronized using a separate GPS receiver, and our data was later correlated with that acquired at a nearby wired sensor array. In addition to continuous sampling, we have developed a distributed event detector that automatically triggers data transmission when a well-correlated signal is received by multiple nodes. We evaluate this approach in terms of reduced energy and bandwidth usage, as well as accuracy of infrasonic signal detection.

Published in:

Wireless Sensor Networks, 2005. Proceeedings of the Second European Workshop on

Date of Conference:

31 Jan.-2 Feb. 2005