By Topic

An application of L-band synthetic aperture radar to tide height measurement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sang-Wan Kim ; Dept. of Earth Syst. Sci., Yonsei Univ., Seoul, South Korea ; Sang-Hoon Hong ; Joong-Sun Won

A method for measuring the tide height near the coast from L-band synthetic aperture radar (SAR) data is presented. Twenty-one coherent interferograms have been successfully constructed from Japanese Earth Resources Satellite 1 (JERS-1) SAR data obtained over oyster sea-farming structures. A coherence analysis of the 21 interferometric pairs showed that a perpendicular baseline of less than 3 km, with a temporal baseline within 500 days, are required to obtain a coherent pair, with a coherence higher than 0.25, in the study area. The coherent phases preserved in the interferograms showed a close relation with the sea level. The problem of phase unwrapping to restore an absolute tide height was overcome by introducing normalized image intensities. The radar measurements estimated by the proposed method were verified using tide gauge data, and comparison of the two datasets yielded a correlation coefficient R2 of 0.91, with a root mean square error of 5.76 cm. The results demonstrate that radar interferometry can be applied for a tide height measurement near the coast given sufficient structures that return off-nadir radar pulses to the antenna. The multipolarized L-band SAR system will provide better results, using only double-bounced signals, in the future.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:43 ,  Issue: 7 )