By Topic

Rate-distortion optimized compression and view-dependent transmission of 3-D normal meshes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jae-Young Sim ; Sch. of Electr. Eng. & Comput. Sci., Seoul Nat. Univ., South Korea ; Chang-Su Kim ; C. -C. J. Kuo ; Sang-Uk Lee

A unified approach to rate-distortion (R-D) optimized compression and view-dependent transmission of three-dimensional (3-D) normal meshes is investigated in this work. A normal mesh is partitioned into several segments, which are then encoded independently. The bitstream of each segment is truncated optimally using a geometry distortion model based on the subdivision hierarchy. It is shown that the proposed compression algorithm yields a higher coding gain than the conventional algorithm. Moreover, to facilitate interactive transmission of 3-D data according to a client's viewing position, the server can allocate an adaptive bitrate to each segment based on its visibility priority. Simulation results demonstrate that the view-dependent transmission technique can reduce the bandwidth requirement considerably, while maintaining a good visual quality.

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:15 ,  Issue: 7 )