By Topic

Network-on-chip architectures and design methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Benini, L. ; Univ. di Bologna, Italy ; Bertozzi, D.

Performance and power of gigascale systems-on-chip (SoCs) is increasingly communication-dominated. Designers have to accommodate the communication needs of an increasing number of integrated cores while preserving overall system performance under tight power budgets. State-of-the-art SoC communication architectures start facing scalability as well as modularity limitations, and more advanced bus specifications are emerging to deal with these issues at the expense of silicon area and complexity. Communication architecture evolutions mainly regard bus protocols (to better exploit available bandwidth) and bus topologies (to increase bandwidth). In the long run, more aggressive solutions are needed to overcome the scalability limitation, and networks-on-chip (NoCs) are currently viewed as a 'revolutionary' approach to provide a scalable, high performance and robust infrastructure for on-chip communication. The paper aims at surveying the evolution of the field, moving from SoC buses to forward-looking NoC research prototypes. The elements of continuity, as well as the key differences, will be captured, in an effort to extract general guiding principles in a fast-evolving domain.

Published in:

Computers and Digital Techniques, IEE Proceedings -  (Volume:152 ,  Issue: 2 )